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Abstract

In this paper, we are concerned with the per packet transmission delays

induced by the Capetanakis collision resolution protocol for infinitely large

number of identical bursty users.

We first correct the existing lower and upper bounds on the expected per

packet transmission delay E{D}.

Then, we proceed by developing a new upper bound on E{D1. This new bound

is much tighter, approaching the lower bound for large arrival rates.
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1. Introduction

In this paper, we are concerned with the "multiple-access" problem,where a

large number of independent, packet transmitting, bursty users request access to

a common channel. We consider "random-access" transmission protocols, as more

efficient for the present problem [41.

In more specific terms, the user and channel models considered, are asj

follows:

Mi The users are independent from each other, and they can communicate

with each other only through the channel. Furthermore, the users

are large in number, they are identical and bursty, and each generates

packets of fixed common length. The cumulative input to the channel

traffic is a Poisson process.

(ii) The common channel is perfect, i.e. there are no channel errors. In

addition, the channel time is divided in slots of identical length,

where this length is equal to the length of one packet.

(iii) The feedback channel is perfect, i.e. it does not induce propagation

delays. Furthermore, the feedback channel broadcasts with no errors

the outcome from each channel slot. In particular, it broadcasts a

trenary sequence, where the value of each digit from this sequence

indicates if the corresponding slot was empty, busy with exactly one

packet, or busy with at least two packets.

(iv) The transmission characteristics imply low-level synchronization among

the users. In particular, each user is allowed to transmit at most

one packet at the time, and he can start transmission only at the

beginning of some channel slot. Thus, some channel slot is empty if
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no user transmitted a packet within it. Some channel slot is busy

with exactly one packet if exactly one user transmitted within it.

It is assumed that iLn this last case the transmitted packet is received

correctly. Incorrect transmission occurs only if at least two packets

are transmitted within the same slot. Then, collision occurs, and the

involved packets are lost completely. If so, those packets are restored

in the queues of the corresponding users, and are retransmitted within

some future slots.

Any "'random-access" transmission protocols, which are appropriate for the above

model, are characterized by a number of performance parameters. The number one such

performance parameter, which in fact determines the eligibility of a given random-

access transmission protocol, is stability A stable random-access transmission

protocol maintains the rate of the cumulative input Poisson traffic, while an

unstable such protocol does not. Given a stable random-access transmission protocol,

two other performance characterisitcs for comparison with other stable such protocols,

are the throughput and the per packet transmission delay. The throughput is defined

as the ratio p = #successful transmissions induced by the random-access transmission
#transmission attempts

protocol, and it is related to the channel capacity. In fact, the channel capacity

is the maximum of all throughputs induced by stable random-access transmission

protocols. The per packet transmission delay is defined as the time between the

arrival of some packet and its successful transmission, where time is measured in

number of channel slots.

The oldest existing random-access transmission protocol for the user and channel

models stated in this paper, is the slotted-Aloha. The problems regarding the opera-

tion of the slotted-Aloha, are by now well known [1-4], and we will not discuss them

here. Instead, we will focus on the protocol by Capetanakis [1-4]. Capetanakis'
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protocol has been called collision-resolution protocol, it is stable for input

Poisson rates below .3465, and it induces a throughput of .43. Refinements of

Capetanakis' algoritrim by Gallager, Massey, and Mosely, have increased the input

Poisson rate for stability to .375, and the induced throughput to .488 [4].

In this paper, we concentrate on the per packet transmission delay induced by

Capetanakis' collision resolution protocol. Afterall, the very reason for considera-

tion of random-access protocols is the improvement of delays.

Capetanakis studied the per packet transmission delay (or waiting time) induced

by his otocci. The resulting expression being complex, a lower and an upper bound

on this delay were developed. The procedure for the derivation of these bounds can

be found in [1,4].

Here, we develop tighter lower and upper bounds on the per packet transmission

delays induced by Capetanakis' protocol, through the correction of some step in the

used procedure [1,4] first, and then through a fresh approach.

2. The Capetanakis Protocol - Notation

We will use reference [4], since we feel that Capetanakis' protocol and its

analysis are best explained there. We will use basically the same notation as in

[4], and we will describe the Capetanakis Collision Resolution Protocol (CCRA) only

briefly and quantitavely.

The CCRA is activated just after a collision slot. Then, through the feedback

channel, all users are instructed to withhold newly generated packets until the

collision is resolved. The collision resolution interval (CRI) is the number of

slots required for the resolution of the collision, that is the successful trans-

mission of all packets involved in the collision. The collision resolution is

obtained through the application of the CCRA, during the CRI. The CCRA is based on

the following general principle:
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After each collision slot within the CRI, each user involved

in this collision flips independently a binary fair coin with

outcomes 0 and 1. Among those users, only the ones with out-

come 0 transmit within the next slot. Until the initial

collision is completely resolved, the resolution of no other

collision within the CRI is attempted.

The CCRA has the structure of a binary tree, where each node within the tree

is taken to the leaves-depth, before other nodes on the same depth with the original

node are resolved.

Using the reasonable for infinite number of identical bursty users assumption,

that during any CRI there may be at most one new packet arrival per user, we define

as in [41 the following parameters:

LN : The expected length of a CRI, given that the number of packets involved

in the collision within the slot with which the CRI starts, is equal to N.

X : The number of packets involved in the collision of the first slot of the1

ith CRI, from the beginning in time that the system starts operating.

Y : The length of the ith CRI.

XCO : The XI for i-o, that is in steady-state.

Y- : The Y. for i-'°.

Y : In steady-state, the length of the CRI in progress, when some new packeta

arrival occurs.

Yd : In steady-state, the length of the CRI in progress, when some packet

departs from the system (that is, when the packet is successfully

transmitted).

Xd : In steady-state, the number of packets involved in the collision of the

first slot of the CRI, during which a packet departs from the system.
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D : In steady-state, the time interval measured in number of slots, from the

arrival of some packet to its departure from the system.

: The rate of the cumulative input Poisson process.

i ; if i = N

iN 0 ; otherwise

We will point out here that the existence of steady-state for the CCRA has been

proven rigorously by Capetanakis.

Using the notation presented in the present section, in the next section we

will outline the approach taken and the results obtained in [4], regarding the per

packet transmission delays induced by the CCRA.

3. The CCRA Transmission Delays

In [4], lower and upper bounds on the expected per packet transmission delays

(waiting times) E{D} induced by the CCRA, have been obtained. The bounds are valid

for rates X in the region [0, .3465]. Within this X region, the expected length

of each CRI is finite, and the system reaches steady-state.

The following approach was taken in the development of the bounds (in [4]).

First a recursive expression for the evaluation of LN was obtained. Based on

this expression, the following lower and upper bounds on LN were obtained:

LN > 2.8810 N - 1 + 2 6 N - 0.8810 61N (I)

LN < 2.8867 N + 60N - 1.8867 61N (2)

In parallel, it was also found that the following equality holds:

E{Y 2

E{Ya = E{(3)

a E Y __F00

----- - ----
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From this point on, the key expression used for the eventual evaluation of

the bounds for E{D}, was the following:

E / = AL (4)
Xd'a

Expression (4) is true due to the fact that the arrival process is Poisson,

and it results in the following expression:

E{Xd} = A E{Ya (5)

The bounds in (1) and (2), in conjuction with expression (5) and the obvious

relation E d LN result then in the following lower and upper bounds for
Xd = N= N2

the expected value E{Y d}:

-A E{Y I
E{Y d  > 2.8810 A EfYa } - 1.8810 + 2.8810 e a (6)

d- a

E{Y d  < 2.8867 X E{Y a + (1 - 1.8867X) e (7)

The bounds in (6) and (7) are expressed as functions of the rate A and the

expected value E{Ya}.

Subsequently the following lower and upper bounds on the expected delay E{D}

were found, in terms of E{Y a } and E{Y d}:

EYa } + IE{Y -i<E <-E{Y } + E{Y - I} (8)
2 a 2{d - -2 a d

The bounds in (8), in conjuction with the bounds in (6) and (7), result clearly

in the following bounds for E{D}

1 -X E{Ya}

E{D} > ( + 1.4405 A) E{Y 1.4405 (1 - e- (9)
2 a

i -X

E{D} < (I + 2.8867 A) EfYa + (I - 1.8867X) e - 1 (10)

In expressions (4.42) and (4.43) in [4], a parenthesis is missing.
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The bounds in (9) and (10) are functions of A and E{Y a only.

Finally, tight bounds on E{Y0 ) and E{Y2}, result in tight lower and upper

bounds for E{Y } in (3). These bounds clearly provide lower and upper bounds fora

E{D} through (9) and (10), and they are given by the following expressions:

( 5.964A + I - 5.964A(I-A)(l - 2.8867A)/f. - 2.8867A(1-A)l ; X < 22

1 - 8.333X
2  .

E{Ya  < (11)
5.964X + 12; .22 < X < .3464

1 - 8.333X

5.897X + (1 - 5.897X)(1 - 2.8867X)/[l - 2.8867X(i-X)] ; A < .1696

1 - 8.300A
2

E{Y a } > 12
-{ a > .1696 < X < .3464

1 - 8.300 2 '

The bounds in (11) and (12), in conjuction with the bounds in (9) and (10),

provide lower and upper bounds for E{D}, which are functions of the rate X only,

as desired.

These bounds have been computed for different X values [4]. We will discuss

the results from the computations in [4] as they compare to our results, in the

following section.

4. Modified E{D} Bounds

In section 3, we outlined the approach taken in [4] for the computation of

lower and upper bounds on the expected per packet transmission delay E{D}.

The key expression for the computation of the E{D} bounds in [4], was expression

(4) in section 3 of the present paper. But the assumption throughout the whole

related analysis, is that there exists at least one packet arrival within the Ya
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slot period. Thus, the relevant key expression in the computation of the E{D}

bounds should be an expression for the expectation E{XdIYa = L, Xd > 1}, rather

than the expression for the expectation E in (4).a=/

In this section, we will substitute expression (4) by an expression for the

expectation E Yd/ = L, X > -I and we will subsequently compute modified lower

and upper bounds for the expected value E{D}.

Due to the fact that the packet arrival process is Poisson with rate X, we

clearly have:

0 ; k=O

Y= L, Xd >) ( Xd Y = L) eX L (XL)k (13)

Sk! k > 0

P (Xd /y=L) L

a

From expression (13), we have in a straight-forward manner:

E = XL (14)
El Xd/ya = L, Xd > l} 1-e

'Xd =>, k /( v ( )k)

P / Xd > 1 = E -Xg (15)
/ -d 1 - a Xd _>l

where the expectation in (15) is with respect to Y a.

At this point, let us observe that the implicit assumption is that at least

one arrival occurred during the slot interval represented by Ya- This assumption

implies Xd > 1. It is due to this observation that Massey [41 dropped the condi-
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tioning Xd > 1 from the expectation E d/Ya = L, Xd > Unfortunately, however,

the above observation does not imply that the Xd process is Poisson. The distribu-

tion of Xd is rather reflected by expression (14).

Using the above observation, we will delete from now on the conditioning

X d > 1 from expressions involving expectations on Y a. Then, the Xd > I condi-

tioning in (15) is deleted, and we proceed as follows.

From expression (15) we obtain directly the following expressions:

P d  i XY ae -'Y a

xd > ) = E  a -} (16)
1- aX

E JX Xd > 4 = E a (17)
1 - e-XY a

In expressions (16) and (17) the expectations are with respect to Ya-

Now, we will use the upper bound for LN., as given by expression (2), where the

term 60N is deleted due to the Xd > I conditioning. We obtain then, the following

inequality

E = N, Xd > 1 = LN < 2.8867 N - 1.8867 6 1N ; N > 1 (18)

Directly from (18), we also obtain the following expression.

E X > < 2.8867 E I A 1- 1.8867 P (Xd /Xd ) (19)

Substituting expressions (16) and (17) in expression (19), we obtain:

E <_ _aXd > 1 2.8867 E a - 1.8867 E a (20)
dY a- I -%Y-Y
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In the right part of inequality (20), we add and subtract the term E a - I

We then obtain: e 1 - a

E d 1 < 2.8867 A E{Y } + E - (21)

Observing now that Y > 1, and that for x > 0 the function is monotoni-
a

e -1

cally decreasing with increasing x, and it is convex for x > 1, we can obtain the

following bound:

IE Y I Y > 1 (22)

le e 1 ; F or Y a --

Substituting the bound in (22) in expression (21), we obtain:

E > 1t < 2.8867 A E{Y ) + X (23)Xd -- -- a e A1

Expression (23) provides an upper bound on the expectation E d 

I Xd > 1
which is different than the upper bound in (7), if the conditioning Xd > 1 is

deleted as necessary and implicit.

Using the lower bound for L as given by expression (1), we can derive similarly

a lower bound f6r E Xd
Xd > 1

Indeed, deleting again the term 6 ON in (1), we obtain:

E d/X = N, 1 LN > 2.8810 N - I - 0.8810 6IN (24)

Averaging out with respect to N, as in (19), and substituting expressions (16)

and (17), we obtain from (24):

Ed> > 2.8810 E - a J - I - 0.8810 E A -- (25)
-- 1 e- a -e- a
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Adding and subtracting the term 2EIa e- in the right part of (25), we

e a
obtain:

E d/ > 2.8810 A EfY 1 +2E a1 (26)
d e a-I

Ax

Due to the convexity of the function for x 5 1, and due to the fact that

e X-1

Y > 1, applying the Jensen inequality we obtain the following bound:a -

IEY ; E{Ya }E -yaa > X -- E1Ya }T (27)

(e - e -I

Substituting the bound in (27) to the inequality in (26), we finally obtain:

E Yd > 2.8810 X E{Ya } - 1 2 X{Ya (28)

e -

Expression (28) provides a lower bound on the expectation E > I 4
which is different than the lower bound in (6), if the conditioning Xd > 1 is

deleted as necessary and implicit.

Using now the bounds in (23) and (28), in expression (8), after deleting the

conditioning Xd > 1, we obtain the following modified bounds for the expectation

E{D}:

1 aEfY
E{D} ( + 1.4405 A) E{Y a } -1 + XE{ya (29)

aX
e -

E{D} < ( + 2.8867 A) E{Ya } - 1+ -1 (30)
e -l

The bounds in (29) and (30) are different than the corresponding bounds in

(9) and (10), and they are functions of the rate A and the expected value E{Y a.
a
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If the bounds on the expected value E{Y a1, as given by expressions (11) and (12),

are used in expressions (29) and (30), modified lower and upper bounds on E{D)

can be obtained. These last bounds are functions of the rate X~ only, as desired.

We performed parallel computations for the bounds In (9) and (10) and the bounds

in (29) and (30), for different values of X. our results are exhibited in table 1.

As expected, due to the correction we obtained by the addition of the conditioning

X d> 1, our modified lower and upper bounds are higher than the corresponding bounds

in [4], for all X values. Also, as expected, the correction has stronger effects on

low X values. In fact, for X values below 0.15, our modified lower bound is higher

than the upper bound in [4]. in general, the curves indicating the modified lower

and upper bounds are shifted upward versions of the corresponding curves in figure

4.1 of [4].

Lower Bounds Upper Bounds

A0 M 0 M

0.0500 0.521 0.569 0.531 0.645
0.1000 0.599 0.701 0.664 0.881
0.1500 0.780 0.961 1.009 1.319
0.1696 0.902 1.125 1.252 1.595
0.2000 1.200 1.505 1.842 2.236
0.2500 3.423 3.958 5.762 6.231
0.3000 9.009 9.521 14.560 15.096
0.3333 38.067 38.508 58.204 58.781
0.3400 80.203 80.643 121.458 122.043
0.3450 371.910 372.351 559.442 560.032

0 :Bounds in [4)

M Modified Bounds in (29) and (30).

Table 1
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5. Improved Bounds for E{D)

In section 4, we simply corrected the bounds in [4] for E(D).

In this section, we will take a fresh approach, to develop tighter bounds on

E{D.

We will first develop an exact expression for a per packet waiting time para-

meter. We will then present an intuitive analysis and subsequent bounds on this

parameter. Finally, using these bounds, we will compute bounds on E{DI.

Given that N packets are involved in the collision within the first slot of

some CR1, we will first seek expressions for the expected transmission delay for

each of the N packets, within the CR1. We will adopt Capetanakis' collision resolu-

tion protocol [I - 41.

After the first collision slot within the CR1, which started with N collided

packets, let i out of the N users have outcome 0 from flipping their fair coin.

Then, the corresponding outcome for the remaining N-i users is 1. Let us denote

this event (i, N-i). Then, given the event (i, N-i), each of the N packets gives

i N-i
outcome 0, with probability l. It gives outcome 1, with probability ---.

Define:
i

d : The expected delay in the transmission of some packet within the

;j =0,1 CR1, given that the packet gave outcome j at the first trial, and

that the first trial event is (i, N-i).

mN/i :The expected delay in transmission of some packet within the CRI,

given that N packets were involved in the collision within the first

slot of the CRT, and that the first trial event is (i, N-i).

mN  :The expected delay in transmission of some packet within the CRI,

given that N packets were involved in the collision within the first

slot of the CR1.
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Then, we have:

i i N-iN/i =doN + d1 -N (31)

Also, defining m0 = 0, observing that mI = 0, and considering the operation

of the CCRA, we can easily see that the following expressions hold for N > 2:

id 0 1 +m

(32)
i

d1  1 + Li + mNi

; where Li is defined in section 2 of this paper. Substituting expressions (32) in

(31) we obtain:

i N-i

1i =l+ni + i-- (aN_ i + Li) ; N > 2 (33)

Clearly, the probability with which the event (i, N-i) occurs is (N) 1
2N '

Therefore, we have:

N

mN 1:(N) 1(34)
i=O 

i

Substituting expression (33) in expression (34), we obtain:

N-I N-I

(2N-2) m.=2 N + 2 1 (i-: ) m. + ~ (N I Li1 (35)

i=l i=O

Now, we use the following expressions from [4]:

N

2 NL 2N +2(N)L ; N>2
i-0

(36)

L= L =10 1
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Using expressions (36) and (35), we finally obtain the following exact recursive

expressions for mN, which also involve the Li's:

N-1
(2"- 2 ) N -2 LN_ + 2 (Ni-) i + 3(2N-2) ; N > 3

i=l

m0  mI  0 (37)

m -3
2

In the appendix, we present an alternative procedure for the exact evaluation

of the mN parameters.

Unfortunately, the expressions in (37) are complex, and the development of

bounds for the mN's from them, seems impossible. For that reason, we will use some

intuitive analysis for the evaluation of the mN's. Then, we will verify the results

from the intuitive analysis, by computationally comparing with the exact expressions

in (37).

a. Intuitive Analysis for m

Consider some CRI, which starts with a slot with 2N collided packets. If

N-, then with probability close to one, the first trial will result in N outcomes

equal to 0, and N outcomes equal to 1. Thus,

I + mN ; with probability - 1

m2N 2 (38)

N-K 1 + LN + mN ; with probability ~

Therefore, we conclude from (38) that for N- we have:

m 2N 1+ mN + LN12 (39)
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Following the recursions induced by expression (39), we obtain:

k-i

m k =k+ m +.I ; for N power of 2, and N large (40)
2k 1 2 2

Similarly, for N equal to a power of 2, and N large enough, we also obtain:

k-i

L k + L i. (41)k 121
22

Substituting (41) in (40), we then obtain:

k L2k L1
m 2k 2 + -+m I  (42)

Denoting N 2k and k = Zog 2N, we finally obtain from (42) the following

approximation:

N  .5 Zog2N + !LN. + C ; N (43)

LN

where C is a variable equal tormI -m-- , whose influence on the expression (43)

is infinitesimal for large N's.

Let us now define:

m = .5 ZogN +- (44)

Then, mN provides an approximation for the parameter mN, whose exact expression

is given by (37).

It is unknown, at this point, how good an approximation of mN, mN is. We will

study the closeness between mN and a numerically. We present our results on that,

in the following subsection.
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b. Comparison between m. and m

We denote by mN the exact expression in (37). We denote by m' the approxima-

tion in (44). We define:

eN = - (45)

We study the closeness between the expressions for mN and ma numerically, by

computing the parameters eN and N- eN for different N's. The results of our compu-

tations are exhibited in table 2.

From the results in table 2, we observe that for increasing N, the parameter
-le

eN increases monotonically, while the rate of increase N eN decreases monotonically.

In fact, we observe that for N > 2, the N-leN values remain within the interval

[0, .019]. Due to the monotonicity of the function f(N) = N eN, the observed

upper bound .019 on f(N) is pessimistic for N values larger than 70. Using this

pessimistic bound for large N's, together with the lower bound 0 for f(N) and with

expressions (44) and (45), we obtain the following lower and upper bounds on the

exact mN, for N > 1:

L N  LN
.5 + 5 61N mN < .5 tog2N + - + .019N - .5 6IN (46)

The bounds in (46) will be used for the computation of lower and upper bounds

for the expectation E{D}.

c. Lower and Upper Bounds on E{D}

We will first proceed with bounds for the expectation E{mN}. These bounds will

be found through the computation of the expected values of the bounds in (46), condi-

tioned on Xd > 1 (as in section 4 of this paper).

We will first compute the expected values of each term in the bounds appearing

in (46). We recall that the ramdon variable N corresponds to Xd = N, where Xd is
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N NMN N e N eN
1 0.0 0.50000CC00 -0.5000OO00 - 77 -0.5000C0a00
2 0.3300000+01 03000GC+01 ... 0.222045D-15 0.444009D-15
3 0.4666670+01 0.4625BI1+01 0.1361740-01 0.408521D-01
4 0.6333339+01 0.6261900+01 - 0.1785710-01 0.714286D-01
5 0.796190D+01 'i 0.7870490+01 .0.1828340-01 0.9141690-01
6 0,g55361D 01 0.94491+01 - 0.174334D-01 0.1046C00O00
7 .111179D+02 . 0.110041002 0.1624740-01 0.1137320+00-
8 0.126631D 02 00125427C02 0.15Q5310-01 0.1204240+00 -
9 0.1-419500+02 0.1406950+02 0.1395290-01 0.125576D+0- -

10 0.'571739+02 0.1558760 02 0.1296910-01 0.1296910+00
11 0.1723190+02 0.17098EC+02 0.1209670-01 0.133064D000
12 0.1574020+02 0.1860440+02 0.113233D-01 0.1358800+00
13 0.202433D+02 0.2C05CC+02 0.1063560-01 0.1382630+00
14 0.2174170 02 0.216014C+02 0..002170-01 0.1403030+00
15 0.232361D+02 0.2309410 02 0.9471110-02 0.1420670+00
16 0.2472700+02 0.245834+02 068975300-02 0.1436050+00
17 0.2621480+02 0.2606980+02 0.8526910-02 0.144953D+00
18 0.2769990 02 0.2755370+02 0.8119820-02 0.1I461570+00
19 0.2918250+02 0.290353C+02 0.774282C-02 0.1472280+00
20 0.3^6631002 0.305149C+02 0.7409510-02 0.148190D+00
21 0.321417002 0.3199270+02 0.7098120-02 0.1490600+00
2z 0.3361870+02 0.3346a9C+02 0.6811430-02 0.1493520+00
23 0.3509410+02 0.349436C+02 0.6546690-02 0.1505740+00
24 0,3656820+02 0.3641700+02 0.6301520-02 0.1512360+00
25 0.3504100+02 0.378851[+02 0.607384C-02 0.1518460+00
26 0.3951250+02 0.393601C+02 065361EE0-02 0.1524090 00
27 0.4098309+02 0.4083010+02 0.5664080-02 0,152930D+00
28 0.424;250+02 0.422991C+C2 0.5479070-02 0.1534140+00

_29 0.4392100+02 0.4376720+02 0.5305670-02 C.1538650+00
30 0.4533870+02 0.4523440 02 0.5142820-02 0.154285000
31 0.4555540+02 0.467006C+02 0.4989600-02 061546730+00
32 0.4532140+02 0.4816640+02 0.4845170-02 0.1550450+00
33 0.4975679+02 0.4963130+02 0.4708810-02 0.1553910+00
34 0.5125130+02 0.510955C+02 0.4579870-02 0.155716D+00
35 0.527152D+02 0.525591C+02 0.4457760-02 0,1560220*00
36 0.5417850+02 0,540221C+02 0.4341959-02 0.1563100+00
37 r,5564120+02 06554846C+02 0.4231980-02 _ 0.1565830+00
38 0.5710330+02 0.5694650+02 0.4127410-02 0.1568420+00
39 0.5356500+02 0.5840790+02 06402786C-02 0.1570670+00
40 0.600261D+02 0.5986580+02 . 0.3932980-02 0.1573190+00
41 0.6148680+02 0.613293aC02 0.3842450-02 0.1575410+00
42 0.6294710+02 0.627893C+02 0.375r980-02 0.1577510+00
43 0.6440690+02 0.6424390+02 0.3673300-02 0.1579520+00
44 0.658663D+02 0,657032[+02 0.3594180-02 0.1581440+00
45 0.673254D+02 0.671671C+02 0.3512380-02 0.15b3270+00
46 0.6578410+02 0.686256C+02 0,3445700-02 0.1585C20+00
47 0.702425Q+02 0.7008380+02 0.337596C-02 0.1586700+00
48 0.7170050+02 0.715417L+02 0.3308980-02 0.1588310+00
49 0.7315829+02 0.729992C+02 0.3244600-02 0.1589B5D00
50 0.746156D+02 0.7445;50+02 0.3182680-02 0.1591340 0o
51 0.7507280+02 0,7591350 02 - 0.3123060-02 0.1592760+00
52 0.7752960+02 0.773702C+02 0.3065640-02 0.1594130 00
53 0.7398620+02 0.788257C+02 0.3010290-02 0.159545000
54 0.8344250+02 0.80282S0+02 0.2956890-02 0.1596720+00
55 0.8189860+02 0.8173z[ +02 0.2905360-02 0.1597950+00
56 0.8335459+02 ,E.31946C+02 0.28555rD-02 0,1599130+00
57 0.8481010+02 0.8465CCC0C2 0.2807480-02 0.1600270+00
58 0.852654D+02 0.861053Z+02 0.276098D-02 0.1601370+00
59 0.8772060+02 0.E756040+02 0.2715980-02 0.1602430+00
60 0.8917560+02 0.E901520+02 0.2672430-02 0.1603460+00
61 0.963030+02 0.9C4699;+@2i 0.263024D-02 0.16044 5 1+ 00
62 0.9204 3+02 0.919243+02 0.Z'58937D-02 0&160541 +00
63 0.9353920+02 0.93375-C+02 0.,2549740-02 0.160634D00
64 0.9499340+02 0.S49325C+02 0.2511310-02 09160724000
65 0.9544730+02 OS.623co+02 0.2474020-02 0.1609110+00
66 0.9790110+02 0,9774C31 02 0.2437F20-02 0.1608960+00
67 0.93354n0+02 0.9919380+02 0.2402660-02 06160973D+00
6E 0.OGOSD+03 06100647C+03 0.23649D-02 0,1610570 00
69 0.1022620+03 0.1021C00+03 0.233529C-02 0.1611350+00
70 0.1337150+03 . 0.103553 +03 . 0.2303000-02 0.161210000

MAXNO 5 MAX = .182834D - 01

MINO - 2 MIN = .111022D - 15

Table 2
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defined in section 2 of this paper.

We have:

EIN/Xd 4/ 4(47)X d > 1X d > 1A-Y

where in (47) expression (17) has been used, and as in section 4 the conditioning

Xd > 1 is deleted from expectations involving Ya" Y is defined in section 2.
(' a

A simple transformation on the expectation E a leads to the following
'-e _Xa

equation:

4 X:~ E{Y } + E Y a(48)
I = le a-i

Using,as in section 4,the convexity of the function for x > 1, and

recalling that Y > 1, we obtain the following inequality from (48):a-

E{ a < X E{Y } + X (49)

-e a

Substitution of (49) in (47) gives:

EIN/xd > II < X E{Y } + (50)
a e A-1

Similarly, using the concavity of the logarithmic function, and the inequality

(50), we obtain:

E 2/ > i<2 og 2 E N < l} og 2(AE{Ya} + X (51)> -- > i <--2EI X 1 o a e _ -

Now recalling that LN is the same with Yd in section 2 of this paper, and using

the bound (23) in section 4, we obtain:

A I____
.... . . " '. .. , al-
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E d--i = E d>-- < 2.8 8 67 X E{Y a  + A (52)

Finally, using expressions (16) and (27) in section 4, we compute:

E 6 IN ( Xd 1/ ~ =Ef Xa >X EYa ' 53)
IXd > 1Xd >1 a) e a-

Through expressions (46), (50), (51), (52), and (53), we obtain the following

upper bound on the expectation E:mN}, where the conditioning Xd > 1 is now deleted

as implicitly necessary:

E{mN} < .5 Zog2 (X E{YaI + y- ) + .5 (2.8867 E{Ya } + eTX
e -1-e

(54)
E{Y I

a
+ .019 (X E[Y aI + -T-) - .519 X X MY I

ee -

Due to difficulties in obtaining lower bounds for the expected value of the

lower bound in (46), we will not search for a lower bound on the expectation E{mNI.

Instead, we will use the lower bound in (29) for the expected value E{D}. As we

will see, our numerical results justify this approach.

The E{D} and E{mN } expected values, are clearly related through the following

equation:

E{D} = .5 E{Ya ) + E{mN (55)

Substitution of the bound in (54), in equation (55), provides the following

upper bound on the expectation E{D}:
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E{D} < .5 og (X E{Y}I + )+ (.5 + 1.4434 X) EfY I +to2 a A-1 a

E[Y a}(56)

+ A + .019(X E{Ya} + e~l).519x eX
2(e 1) a e X- AE a -1

Finally, using the bounds on E{Y}a , as given by expressions (11) and (12) in

section 3 of this paper, we obtain from (56) an upper bound on the expectation E{D},

which is a function of the rate X only.

in table 3, we exhibit our computational results, where the upper bound is

computed through expression (56), while the lower bound is computed through expression

(29) and is the same as in table 1, section 4. Comparing the upper bounds in tables

1 and 3, we see that the bounds in table 3 are much tighter. In addition, we observe

that for high X values, close to the limit .3465 for stability of the CCRA, the

lower and upper bounds in table 3 are very close to each other. This result justifies

the fact that we maintained the same lower bound, as in section 4.

Upper Bound
X Lower Bound Upper Bound From Table 1

0.0500 0.569 0.615 0.645
0.100 0.701 0.814 0.881
0.1500 0.961 1.193 1.319
0.1696 1.125 1.431 1.595
0.2000 1.505 1.979 2.236
0.2500 3.958 5.266 6.231
0.3000 9.521 11.889 15.096
0.3333 38.508 42.157 58.781
0.3400 80.643 I 85.119 122.043
0.3450 372.351 J 380.126 560.032

Table 3
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7. Appendix

Alternative approach to the computation of nN

Define:

a N : The expected delay in the transmission of the jth successfully trans-

mitted packet within some CRI, where N packets are involved in the

collision within the first slot of the CRI.

Clearly, a11 = 0.

Now, let N > 2, and let the first trial event be (i, N-i). Then,

f1 + aj, ; for j < i < N

ajN = (A.l)
1 +L. +. a 0 < i < j < N

i ao-i,N-i---

Since the probability with which the event (i, N-i) occurs 
is (N) ,we

obtain from (A.1):

j-1 N
2N -a = ](N) (1 + Li+a , ) + E (N) (1 + aj) =

jN .. ji 1 -i,N-i) + J 1

i=O i=j

j-1 
N

N - +- E (N+(N+ N) aj (A.2)2 = )i iOi a-i,N-i i=j

1=0 1=0

Applying some transformations on (A.2), we finally obtain the following recursive

expressions for the ajk parameters:
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a 0, a 1 2 = 2.5, a2 2  3.5

N
(2 N-2)aN 2 2N + 1 + (N) a,, N > 2

i=l

j-1 j-1 N-I (A.3)

(2N -2)a. 2 2N + :( + E (N) a + E (N) a 2 < j < N-1

i=0=l i=j N > 2

N-1 N-i

(2 N-2)a =2 N+71.JL + . a ; N >2

i=0 i=l

Each of the N packets is the ith successfully transmitted packet within the

CRI, with equal probabilities for all i : I < i < N. Therefore,

N

mN =N aiN (A.4)

By substituting expressions (A.3) in (A.4) and applying some transformations,

we obtain the expressions in (37).

4:



0


